In mathematics, a totally disconnected group is a topological group that is totally disconnected. Such topological groups are necessarily Hausdorff.
Interest centres on locally compact totally disconnected groups (variously referred to as groups of td-type,[1] locally profinite groups,[2] t.d. groups[3]). The compact case has been heavily studied – these are the profinite groups – but for a long time not much was known about the general case. A theorem of van Dantzig from the 1930s, stating that every such group contains a compact open subgroup, was all that was known. Then groundbreaking work on this subject was done in 1994, when George Willis showed that every locally compact totally disconnected group contains a so-called tidy subgroup and a special function on its automorphisms, the scale function.
Contents |
In a locally compact, totally disconnected group, every neighbourhood of the identity contains a compact open subgroup. Conversely, if a group is such that the identity has a neighbourhood basis consisting of compact open subgroups, then it is locally compact and totally disconnected.[2]
Let G be a locally compact, totally disconnected group, U a compact open subgroup of G and a continuous automorphism of G.
Define:
U is said to be tidy for if and only if and and are closed.
The index of in is shown to be finite and independent of the U which is tidy for . Define the scale function as this index. Restriction to inner automorphisms gives a function on G with interesting properties. These are in particular:
Define the function on G by , where is the inner automorphism of on G.
is continuous.
, whenever x in G is a compact element.
for every integer .
The modular function on G is given by .
The scale function was used to prove a conjecture by Hofmann and Mukherja and has been explicitly calculated for p-adic Lie groups and linear groups over local skew fields by Helge Glöckner.